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Abstract— Wireless data broadcast is a promising technique for 
information dissemination that leverages the computational 
capabilities of the mobile devices, in order to enhance the scalability of 
the system. Under this environment, the data are continuously 
broadcast by the server, interleaved with some indexing information 
for query processing. Clients may then tune in the broadcast channel 
and process their queries locally without contacting the server. In 
location-based, mobile continual query (CQ) systems, two key 
measures of quality-of-service (QoS) are: freshness and accuracy. In 
continuous monitoring an air indexing framework that (i) 
outperforms the existing (i.e., snapshot) techniques in terms of energy 
consumption, while achieving low access latency, and (ii) constitutes 
the first method supporting efficient processing of continuous spatial 
queries over moving objects. So to achieve freshness, the CQ server 
must perform frequent query revaluations. To attain accuracy, the 
CQ server must receive and process frequent position updates from 
the mobile nodes. In this paper, we formulate this problem as a load 
flaking one, and develop MobiQual—a QoS-aware approach to 
performing both update load flaking and query load flaking. The 
design of MobiQual highlights three important features like Per-
query QoS specification, 3) Low cost adaptation: MobiQual 
dynamically adapts, with a minimal overhead, to changing load 
conditions and available resources. Load flaking, the MobiQual 
approach leads to much higher freshness and accuracy in the query 
results in all cases, compared to existing approaches that lack the 
QoS-awareness properties of MobiQual, as well as the solutions that 
perform query-only or update-only load flaking. 
Keywords-Query processing, load flaking, Spatial databases, query 
processing, location based services, wireless data broadcast, air 
indexes. 

 
1.INTRODUCTION 

Mobile devices with computational, storage, and wireless 
communication capabilities (such as PDAs) are becoming 
increasingly popular. At the same time, the technology 
behind positioning systems is constantly evolving, enabling 
the integration of low cost GPS devices in any portable 
unit. Consequently, new mobile computing applications are 
expected to emerge, allowing users to issue location-
dependent queries in a ubiquitous manner. Consider, for 
instance, a user (mobile client) in an unfamiliar city, who 
would like to know the 10 closest restaurants. This is an 
instance of a k nearest neighbor (kNN) query, where the 
query point is the current location of the client and the set 
of data objects contains the city restaurants. Alternatively, 
the user may ask for all restaurants located within a certain 
distance, i.e., within 200 meters. This is an instance of a 
range query. continuous monitoring of multiple queries 
over arbitrarily moving objects. In this setting, there is a 
central server that monitors the locations of both objects 
and queries. The task of the server is to report and 
continuously update the query results as the clients and the 
objects move. As an example, consider that the data objects 

are vacant cabs and the clients are pedestrians that wish to 
know their k closest free taxis until they hire one. As the 
reverse case, the queries may correspond to vacant cabs, 
and each free taxi driver wishes to be continuously 
informed about his/her k closest pedestrians. Several 
monitoring methods have been proposed, covering both 
range and kNN queries. Some of these methods assume that 
objects issue updates whenever they move, while others 
consider that data objects have some computational 
capabilities, so that they inform the server only when their 
movement influences some query. In the aforementioned 
methods, the processing load at the server side increases 
with the number of queries. In applications involving 
numerous clients, the server may be overwhelmed by their 
queries or take prohibitively long time to answer them. 
Continual query (CQ) systems have been proposed to 
handle long running location monitoring tasks in a scalable 
manner the focus of these works is primarily on efficient 
indexing and query processing techniques, not on the 
accuracy or freshness of the query results. Accuracy 
(inaccuracy) is measured based on the amount of mobile 
node position errors found in the query results at the time 
of query reevaluation. This accuracy measure is strongly 
tied to the frequency of position updates received from the 
mobile nodes. Although one can also use a higher level 
concept to measure accuracy, such as the amount of 
containment errors found in the query results,1 including 
both false positives (inclusion errors) and false negatives 
(exclusion errors), we argue that using position update 
errors for accuracy measure will provide a higher level of 
precision. This is primarily because by utilizing the amount 
of node position errors as the accuracy measure, one can 
easily bound the inaccuracy by a threshold-based position 
reporting scheme Note that certain applications have higher 
tolerance to inaccuracy in position updates, such as region-
based traffic density monitoring; whereas certain others 
require higher accuracy, such as path-based location 
tracking. Freshness (staleness), on the other hand, refers to 
the age of the query results since the last query 
reevaluation. It is dependent on the frequency of query 
reevaluations performed at the server. As mobile nodes 
continue to move, there are further deviations in mobile 
node positions after the last query reevaluation. However, 
such post query reevaluation deviations are not attributed to 
inaccuracy. 
To obtain fresher query results, the CQ server must 
reevaluate the continual queries more frequently, requiring 
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more computing resources. Similarly, to attain more 
accurate query results, the CQ server must receive and 
process position updates from the mobile nodes at a higher 
rate, demanding communication as well as computing 
resources. However, it is almost impossible for a mobile 
CQ system to achieve 100 percent fresh and accurate 
results due to continuously changing positions of mobile 
nodes. A key challenge, therefore, is: How do we achieve 
the highest possible quality of the query results in both 
freshness and accuracy, in the presence of changing 
availability of resources and changing workloads of 
location updates and location queries? 
In this paper, we present MobiQual—a resource-adaptive 
and QoS-aware load flaking framework for mobile CQ 
systems. MobiQual is capable of providing high-quality 
query results by dynamically determining the appropriate 
amount of update load flaking (discarding certain location 
update messages) and query load flaking (skipping some 
query reevaluations) to be performed according to the 
application-level QoS specifications of the queries. An 
obvious advantage of combining query load flaking and 
update load flaking within the same framework is to 
empower MobiQual with differentiated load flaking 
capability, that is, configuring query reevaluation periods 
and update inaccuracy thresholds for achieving high overall 
QoS with respect to both freshness and accuracy. Another 
salient feature of MobiQual design is its ability to perform 
dynamic update load flaking and query load flaking 
according to changing workload characteristics and 
resource constraints, and its ability to reduce or avoid 
severe performance degradation in query result quality 
under such conditions. MobiQual employs query grouping 
and space partitioning techniques to reduce the adaptation 
time required for reconfiguring the system in response to 
high system dynamics, such as the number of queries, the 
number of mobile nodes, and the evolving movement 
patterns. To the best of our knowledge, none of the existing 
works has exploited the potential of performing load 
flaking to maximize the application-level freshness and 
accuracy of mobile queries. In contrast to the existing work 
on scalable query processing and indexing techniques, 
MobiQual provides a QoS-aware framework for 
performing both update load flaking and query load 
flaking, in order to provide highly accurate and fresh query 
results, even under limited resources or overload 
conditions. 
Moreover, as a complementary solution, MobiQual can 
easily take advantage of existing query processing and 
indexing techniques. We have conducted detailed 
experimental studies on the effectiveness of MobiQual. Our 
results show that 1) a careful combination of location 
update load flaking and location query load flaking can 
significantly outperform the approaches that are based on 
query-only or update-only load flaking and 2) MobiQual 
provides higher quality guarantees compared to the 
approaches that lack the supports of QoS awareness and 
differentiated load flaking. A preliminary version of the 
MobiQual framework was described. In the current paper, 
we have substantially expanded the MobiQual framework 
by providing 1) a complete description of QoS-aware 
update load flaking in which includes the GRIDREDUCE 

algorithm for performing space partitioning (Section 6.2); 
2) several additional sets of experiments in Section 9, 
evaluating a MobiQual-Light scheme that focuses on 
update load flaking; and 3) a revised performance 
comparison of MobilQual with various schemes. 
 

2 RELATED WORK 
Wireless Broadcasting and Air Indexes 
The transmission schedule in a wireless broadcast system 
consists of a series of broadcast cycles. Within each cycle 
the data are organized into a number of index and data 
buckets. A bucket (which has a constant size) corresponds 
to the smallest logical unit of information, similar to the 
page concept in conventional storage systems. A single 
bucket may be carried into multiple network packets (i.e., 
the basic unit of information that is transmitted over the 
air). However, they are typically assumed to be of the same 
size (i.e., one bucket equals one packet). 
The most common data organization method is the (1;m) 
interleaving scheme as shown in Figure 2. The data objects 
are divided into m distinct segments, and each data segment 
in the transmission schedule is preceded by a complete 
version of the index. In this way, the access latency for a 
client is minimized, since it may access the index (and start 
the query processing) immediately after the completion of 
the current data segment. also introduces an alternative 
distributed index that reduces the degree of replication in 
order to further improve the performance. Specifically, 
instead of the entire index being replicated prior to each 
data segment, only the index that corresponds to the 
subsequent segment is included (i.e., replication occurs at 
the upper levels of the index tree). 

 
                        Fig 1:Interleave Schemas 
The main motivation behind air indexes is to minimize the 
power consumption at the mobile client. Although in a 
broadcast environment the uplink transmissions are 
avoided, receiving all the downlink packets from the server 
is not energy efficient. For instance, the Cabletron 802.11 
network card (wireless LAN) was found to consume 1400 
mW in the transmit, 1000 mW in the receive, and 130 mW 
in the sleep mode Therefore, it is imperative that the client 
switches to the sleep mode (i.e., turns off the receiver) 
whenever the transmitted packets do not contain any useful 
information. Based on the data organization technique of 
Figure 1, the query processing at the mobile client is 
performed as follows: (i) the client tunes in the broadcast 
channel when the query is issued, and goes to sleep until 
the next index segment arrives, (ii) the client traverses the 
index and determines when the data objects qualifying its 
query will be broadcast, and (iii) the client goes to sleep 
and returns to the receive mode only to retrieve the 
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corresponding data objects. To measure the efficiency of an 
indexing method, two performance metrics have been 
considered in the literature: (i) tuning time, i.e., the total 
time that the client stays in the receiving mode to process 
the query, and (ii) access latency, i.e., the total time elapsed 
from the moment the query is issued until the moment that 
all the corresponding objects are retrieved. In other words, 
the tuning time is a measure of the power consumption at 
the mobile client, while the access latency reflects the user-
perceived quality of service. 
Previous works on mobile CQ systems have focused on 
roughly five major categories with respect to scalability and 
performance. They are as follows: 
1. Indexing schemes to process position updates more 

efficiently  
2. Query processing techniques to evaluate continual 

queries more efficiently  
3. Motion modeling techniques to reduce the number of 

position updates received from the mobile nodes, while 
keeping the position accuracy high  

4. Load flaking approaches that achieve scalability on the 
server side by only processing specially defined 
significant updates  

5. Distributed mobile CQ systems that achieve scalability 
by performing query-aware update filtering on the 
mobile node side to receive updates that only relate to 
the current set of queries installed in the system  

The majority of these works, with the exception of the 
works listed under category 5, are mostly orthogonal to our 
work. Some of them can be incorporated into MobiQual 
relatively easily. For instance, MobiQual can use a TPR-
tree [4] as its underlying index structure on the server side, 
can make use of advanced motion modeling techniques [3] 
on the mobile node side, and can employ incremental query 
processing techniques  for query reevaluation. Unlike 
the set of works listed under category 5, MobiQual receives 
updates from all the nodes so that ad hoc and historical 
queries can also be supported. However, MobiQual prefers 
to shed position updates from regions that have minimal 
impact on the currently installed queries, thus achieving 
best of both worlds. Those in category 4 are, to some 
extent, similar to MobiQual, in terms of flaking load in 
position updates. However, they use different techniques 
for load flaking. More importantly, they do not consider 
query load flaking. 
To the best of our knowledge, none of the previous works 
in the field of mobile CQ systems has addressed the 
problem of QoS-aware query management. MobiQual 
addresses this issue by introducing a novel load flaking 
framework. Note that mobile node movement is not 
discrete, but continuous. As a result, zero staleness and 
inaccuracy in the query results is impossible to achieve 
with finite resources. Thus, a solution is required to adjust 
the balance between the update processing and query 
reevaluation components in mobile CQ systems.  
Moreover, this balance is dependent on the tolerance of the 
individual queries to staleness and inaccuracy in the query 
results. Prior works on mobile CQ systems not only have 
overlooked the QoS aspect of the problem, but also either 
have not addressed how frequent the position updates 
should be received from the mobile nodes or have not 

specified how frequent query results should be updated by 
reevaluating the queries. However, as we show in this 
paper, an integrated, QoS-aware approach is essential for 
achieving high-quality query results. 
 

 
Fig 2: mobile CQ systems 

 
3   DESIGN OVERVIEW 

3.1   Load flaking in Mobile CQ Systems 
In a mobile CQ system, the CQ server receives position 
updates from the mobile nodes through a set of base 
stations (see Fig. 1) and periodically evaluates the installed 
continual queries (such as continual range or nearest 
neighbour queries) over the last known positions of the 
mobile nodes.3 Since the mobile node positions change 
continuously, motion modelling is often used to reduce the 
number of updates sent by the mobile nodes. The server 
can predict the locations of the mobile nodes through the 
use of motion models, albeit with increasing errors. Mobile 
nodes generally use a threshold to reduce the amount of 
updates to be sent to the server and to limit the inaccuracy 
of the query results at the server side below the threshold. 
Smaller thresholds result in smaller errors and higher 
accuracy, at the expense of a higher load on the CQ server. 
This is because a larger number of position updates must be 
processed by the server, for instance, to maintain an index 
When the position update rates are high, the amount of 
position updates is huge and the server may randomly drop 
some of the updates if resources are limited. This can cause 
unbounded inaccuracy in the query results. In MobiQual, 
we use accuracy-conscious update load shed-ding to 
regulate the load incurred on the CQ server due to position 
update processing by dynamically configuring the 
inaccuracy thresholds at the mobile nodes. 
Another major load for the CQ server is to keep the query 
results up-to-date by periodically executing the CQs over 
the mobile node positions. More frequent query re-
evaluations translate into increased freshness in the query 
results, also at the expense of a higher server load. Given 
limited server resources, when the rate of query re-
evaluations is high, the amount of queries to be re-
evaluated is vast and the server may randomly drop some 
of the re-evaluations, causing stale query results (low 
freshness). In MobiQual, we utilize freshness-conscious 
query load flaking to control the load incurred on the CQ 
server due to query re-evaluations by configuring the query 
re-evaluation periods. 
In general, the total load due to evaluating queries and 
processing position updates dominates the performance and 
scalability of the CQ server, and thus, should be bounded 
by the capacity of the CQ server. Furthermore, the time-
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varying processing demands of a mobile CQ system entail 
that update and query load flaking should be dynamically 
balanced and adaptively performed in order to match the 
current workload with the server’s capacity, while meeting 
the accuracy and freshness requirements of queries. 
3.2   The MobiQual Approach 
The MobiQual system aims at performing dynamic load 
flaking to maximize the overall quality of the query results, 
based on per-query QoS specifications and subject to 
processing capacity constraints. The QoS specifications are 
defined based on two factors: accuracy and freshness. In 
MobiQual, the QoS specifications are used to decide on not 
only how to spread out the impact of load flaking among 
different queries, but also how to find a balance between 
query load flaking and update load flaking. The main idea 
is to apply differentiated load flaking to adjust the accuracy 
and freshness of queries. Namely, load flaking on position 
updates and query re-evaluations is done in such a way that 
the freshness and accuracy of queries are non uniformly 
impacted. 
From the perspective of update load flaking, we make two 
observations to show that non uniform result accuracy can 
increase the overall QoS. First, different geographical 
regions have different numbers of mobile nodes and 
queries. Second, different queries have different tolerance 
to position errors in the query results. This means that 
flaking more updates from a region with a higher density of 
mobile nodes and a lower density of queries can bring a 
higher reduction on the update load and yet have a smaller. 

 
Fig. 3. QoS-aware update load flaking and QoS-aware 

query load flaking. 
impact on the overall query result accuracy. This is 
especially true if the queries within the region have less 
stringent QoS specifications in terms of accuracy. Thus, in 
MobiQual, we employ QoS-aware update load flaking: We 
use inaccuracy thresholds from motion modelling as 
control knobs to adjust the amount of update load flaking to 
be performed, where the same amount of increase in 
inaccu-racy thresholds for different geographical regions 
brings differing amounts of load reduction and QoS 
degradation with respect to accuracy. We refer to the load 
flaking that adjusts the inaccuracy thresholds based on the 
densities of mobile nodes and queries to maximize the 
average accuracy of the query results under the QoS 
specifications as QoS-aware update load flaking. 
Similar to update load flaking, we make two observations 
regarding query load flaking to show that nonuniform 

freshness in the query results can increase the overall QoS 
of the mobile CQ system: 1) Different queries have 
different costs in terms of the amount of load they incur. 2) 
Different queries have different tolerance to staleness in the 
query results. Thus, it is more effective to shed load (by 
sacrificing certain amount of freshness) on a costly query 
than an inexpensive one. This is especially beneficial if the 
costly query happens to be less stringent on freshness, 
based on its QoS specification. Bearing these observations 
in mind, in MobiQual, we employ QoS-aware query load 
flaking We use query reevaluation periods as control knobs 
to perform query load flaking, where the same amount of 
increase in query reevaluation periods for different queries 
brings differing amounts of load reduction and QoS 
degradation with respect to freshness. We refer to the load 
flaking that uses query reevaluation periods to maximize 
the average freshness of the query results under the QoS 
specifications as QoS-aware query load flaking. 
MobiQual dynamically maintains a throttle fraction, which 
defines the amount of load that should be retained. It 
performs both update load flaking and query load flaking to 
control the load of the system according to this throttle 
fraction, while maximizing the overall quality of the query 
results. As illustrated in Fig. 2, MobiQual not only strikes a 
balance between freshness and accuracy by employing both 
query and update load flaking, but also improves the 
overall quality of the results by utilizing per-query QoS 
specifications to capture each query’s different tolerance to 
staleness and inaccuracy. 
3.3   Notation and Fundamentals 
The set of continual queries installed in the system is 
denoted by Q. For each query q 2 Q, there is an associated 
QoS specification Sq. The QoS function takes a value in 
(0,1)where 1 represents perfect quality in terms of 
freshness and position error, and 0 represents the worst. �q 
and �q are used to denote the degree of staleness and 
inaccuracy in the query results, respectively. �q 
corresponds to the query re-evaluation period for q, 
whereas �q corresponds to the average of the inaccuracy 
thresholds used in motion modelling for the mobile nodes 
within the query result of q. At any given time, the result of 
query q can be at most �q seconds old, and at the time of 
query evaluation, the position of a mobile node in the query 
result can deviate from its actual position by �q meters, on 
average. The mobile CQ system supports a minimum 
staleness value of �‘ and a minimum position error of �‘. 
For any query q, we have Sq(T├ , €├)=1. Similarly, we 
introduce a maximum staleness value, denoted by �a, and a 
maximum position error, denoted by Sa. The staleness in 
the query results cannot exceed the maximum threshold 
value of �a at which point the results are assumed to be 
useless. Also the position error is bounded by �a. In 
summary The minimum and maximum staleness and 
position error thresholds are system parameters. 
Since a scalable mobile CQ system should be able to 
handle tens of thousands of queries and hundreds of 
thousands of mobile nodes, it is inefficient, even if it is 
possible, to adjust and dynamically maintain the 
revaluation periods for queries and inaccuracy thresholds 
for mobile nodes individually. In MobiQual, given a total 
number of n mobile nodes, we partition the geographical 
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area of interest into l regions; use the same inaccuracy 
threshold αi. A query qu whose result lies completely within 
region Ai . For queries whose results contain mobile nodes 
from different regions, αu is given by a weighted average of 
αi values of the involved regions. 
A key question for query load flaking is how to divide the 
queries into k query groups and how to compute the re-
evaluation period Pj for each query group Cj. 
3.4   Trade-Offs in Setting k and l 
In general, the larger the number of query groups (k) we 
have, the higher the quality of the query results is in terms 
of freshness, as it enables performing differentiated load 
flaking with finer granularity. The only restriction in setting 
the value of k is the computational cost (which forms a 
major part of the adaptation cost) of finding an effective 
setting for the re-evaluation periods.  Similar trade-off is 
observed in setting the number of regions (l), and thus, the 
number of inaccuracy thresholds, with one exception. Since 
the changes in inaccuracy thresholds have to be 
communicated back to the mobile nodes through control 
messages (broadcasts from base stations), there is a second 
dimension to this trade-off: The larger the l value is, the 
higher the control cost of the adaptation step will be. In 
Section 10, we experimentally evaluate the benefit/cost 
trade-off in setting k and l to show that with lightweight 
adaptation, we can achieve high-quality query results. 
3.5   Solution Outline 
There are three functional components in the MobiQual 
system: reduction, aggregation, and adaptation: . Reduction 
includes the algorithm for grouping the queries into k 
clusters and the algorithm for partitioning the geographical 
space of interest into l regions. The query groups are 
incrementally updated when queries are installed or 
removed from the system. The space partitioning is 
recomputed prior to the periodic adaptation. 
Aggregation involves computing aggregate QoS functions 
for each query group and region. The aggregated QoS 
functions for each query group represent the freshness 
aspect of the quality. The aggregated QoS functions for 
each region represent the accuracy aspect of the quality. 
We argue that the separation of these two aspects is 
essential to the development of a fast algorithm for 
configuring the reevaluation periods and the inaccuracy 
thresholds to perform adaptation. QoS-aggregation is 
repeated only when there is a change in the query grouping 
or the space partitioning. 
Adaptation is performed periodically to determine:the 
throttle fraction which defines the amount of load that can 
be retained relative to the load of providing perfect quality  
the setting of reevaluation periods and the setting of 
inaccuracy thresholds. The latter two are performed with 
the aim of maximizing the overall QoS. The computation of 
the throttle fraction is performed by monitoring the 
performance of the system and adjusting z in a feedback 
loop. 
In the remaining sections, we first present the aggregation 
of QoS functions, assuming that the query grouping and 
space partitioning are performed (Section 4). We then 
present the formulation of the QoS-aware query load 
flaking problem and present the quality-loss-based cluster-
ing (QLBC) algorithm for clustering the queries into k 

groups (Section 5). Then we formalize the QoS-aware 
update load flaking problem and provide a brief description 
of the QoS-aware space partitioning algorithm for dividing 
the geographical space of interest into l regions (Section 6). 
Finally, we present the formulation of the problem of 
combining query load flaking with update load flaking, and 
present the minimum quality loss per cost step (MQLS) 
algorithm for performing the adaptation step (Section 7). 
 

4   AGGREGATING THE QOS FUNCTIONS 
 
The aim of QoS aggregation is to associate an aggregate 
function for each query group Cj, and an aggregate function 
for each region Ai, such that the overall QoS of the system, 
denoted by �, is maximized. We define 

  
where m is the total number of queries denotes the QoS 
specification for query q and can be defined as follows: 

 
In other words, Sq(T├ , €├)is a linear combination of the 
freshness QoS function Vq (Tq) and the accuracy one 

Uq(€q). The parameter   called freshness 
weight, is used to adjust the relative importance of the two 
components, freshness and accuracy. Vq (Tq) and Uq(€q)are 
nonincreasing positive functions, where Vq (T├)=1 and 
Uq(€├)=1. 
Since the query groups are no overlapping, we have the 
following: 

 
 

5.PARTITIONING THE SPACE WITH GRIDREDUCE 
The goal of the GRIDREDUCE space partitioning 
algorithm is to partition the geographical space of interest 
into l flaking regions such that this partitioning produces 
query results of higher accuracy. 
Algorithm Overview 
The GRIDREDUCE algorithm works in two stages and 
uses a statistics grid as the base data structure to guide its 
decisions. The statistics grid serves as a uniform, maximum 
fine-grained partitioning of the space of interest. In the first 
stage of the algorithm, which follows a bottom-up process, 
we create a region hierarchy over the statistics grid and 
aggregate the QoS functions for the higher level regions in 
this hierarchy. This region hierarchy serves as a template 
from which a nonuniform partitioning of the space can be 
constructed. The second stage follows a top-down process 
and creates the final set of l flaking regions, starting from 
the highest region in the hierarchy (the whole space). The 
main idea is to selectively pick and drill down on a region 
using the hierarchy constructed in the first stage. The 
region to drill down is determined based on the expected 
gain in the query-result accuracy, called the accuracy gain, 
which is computed using the aggregated region statistics. 
5.1The Statistics Grid 
The statistics grid is an α x α evenly spaced grid over the 
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geographical space, where α is the number of grid cells on 
each side of the space. For each grid cell ci;j, the statistics 
grid stores the accuracy QoS function for that grid cell. The 
only data structure maintained over time by the MobiQual 
space partitioner is this grid. The partitioning generated by 
the GRIDREDUCE algorithm using an � � � grid is 
called an (α,l)partitioning. 
5.2 Stage I: Building the Region Hierarchy 
In the first stage, we build a complete quad-tree over the 
grid. Each tree node corresponds to a different region in the 
space, where regions get larger as we move closer to the 
root node which represents the whole space. Each level of 
the quad-tree is a uniform, no overlapping partitioning of 
the entire space. Through a post order traversal of the tree, 
we aggregate the accuracy QoS functions associated with 
the grid cells for each node of the tree. The first stage of the 
algorithm takes O(α2) time and consumes O(α2) space. 
5.3 Stage II: Drilling Down in the Hierarchy 
In the second stage, we start with the root node of the tree, 
i.e., the entire space. At each step, we pick a visited tree 
node (initially only the root) and replace it with its four 
child nodes in the quad-tree. This process continues until 
we reach l visited tree nodes (corresponding to l flaking 
regions), assuming l mod 3=1.The crux of this stage lies in 
how we choose a region to further partition during each 
step. For this purpose, we maintain a max-heap of all 
visited tree nodes based on their accuracy gains, a metric 
we introduce below, and at each step, we pick the node 
with the highest accuracy gain. 
Given a tree node, the accuracy gain is a measure of the 
expected reduction in the query-result inaccuracy, achieved 
by partitioning the node’s region into four subregions 
corresponding to its child nodes. For a tree node t, the 
accuracy gain U(t) is calculated as follows: Let E(t) be the 
average result inaccuracy if we only had one flaking region, 
that is, t’s region. Formally, we have 
 

 
 
Let Ep[t] be the average result inaccuracy if we had four 

flaking regions that correspond to the regions of t’s child 
nodes ti; i € [1::4]. Using n[t] to denote the number of 
mobile nodes in the region of tree node t, we have 

 
Then the difference E[t] - Ep[t] gives us the accuracy gain 
U[t]. The computation of E[t] and Ep [t], and thus, the 
accuracy gain U[t], requires solving the problem of 
inaccuracy threshold setting for a fixed l of flaking regions. 
Concretely, computation of E[t] requires to solve for node t 
with l ¼ 1 and computation of Ep [t], requires to solve for 
the four child nodes of t with l =4. As a result, the accuracy 
gain is computed in constant time for a tree node t. The 
second stage of the GRIDREDUCE algorithm takes O(l  
log l) time and consumes O(l) space, bringing the combined 
time complexity to O(l . log l + α2) and space complexity to 
O(α2+l). 

 
 

6.PROBLEM FORMALIZATION 
The objective of the combined load flaking problem is to 
maximize the overall quality =1/m(v + u). We now 
restate the processing constraint by combining the load due 
to query re-evaluation and update processing. 
Let zv denote the fraction of the query load retained for a 
given set of re-evaluation periods {Pj} We have 

 

Similarly, let zu denote the fraction of the update load 
retained for a given set of inaccuracy thresholds {}. We 
have 

 
With these definitions, we can state the processing  
onstraint as follows: 

 

The parameter  in (11) represents the cost of performing 
update processing with the setting of i , i= ├ compared 
to the cost of performing query re-evaluation with the 
setting of j; Pj =T├ . In other words, for the ideal case, the 
query re-evaluation costs 1 unit, whereas the update 
processing costs   (0,) units. Note that   is not a 
system-specified parameter and is learned adaptively as 
follow: Let U be the observed cost of update processing 
and V be the observed cost of query re-evaluation during 
the last that the workload does not significantly change 
within the time frame of the adaptation period. Recall that 
the load flaking parameters are configured after each 
adaptation period, thus yielding new values for zu and zv 
(by way of changing (Pjs andis). Thus, the combined load 
flaking problem is formalized as follows: 
 
 
 
 
 
 
 
 
 
Note that this is a nonlinear program, since the constraints 
have 1=Pj terms and are not linear. We now describe 
MQLS—a fast, greedy algorithm for setting the re-
evaluation periods and inaccuracy thresholds to solve the 
above-stated QoS-aware load flaking problem. 
The MQLS Algorithm 
The basic principle of the MQLS algorithm is to start with 
the ideal case of j,  Pj = T├  and I, i =├  and 
incrementally reduce the load to z times that of the ideal 
case by repetitively increasing the re-evaluation period or 
the inaccuracy thresh-old that gives the smallest quality 
loss per unit cost reduction. The algorithm is greedy in 
nature, since it takes the minimum quality loss per cost step. 
Concretely, we partition the domain of re-evaluatio

n 
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periods and inaccuracy thresholds into � segments such 
that we increase the Pjs and is in increments of size 
Cv=( T├ - T├ )/ and cu= (├ - ├) respectively. The 
MQLS algorithm maintains a min. heap that stores a quality 
loss per unit cost6 (qlpc) value for each re-evaluation period 
and each inaccuracy threshold. The qlpc value of a re-
evaluation period (or an inaccuracy threshold) gives the 
quality loss per unit cost for increasing it by cv units . The 
qlpc value is denoted by Svj for query group Cj and Sui for 
flaking region Ai. We have 

 
The numerators of the second components in the above 
quations represent the changes in the quality due to the 
increment, whereas the denominators represent the changes 
in the cost. Note that the first components of the above 
equations are used to normalize the costs in the denomi-
nators, so that Sj

vs and Si
us can be compared. 

When the MQLS algorithm starts, the current load 
expenditure of the system, which is the sum of the load due 
to update and query load flaking appropriately weighted by 
�, is above our load budget imposed by the throttle fraction 
z. The algorithm iteratively pops the topmost element of the 
min. heap and depending on whether we have a 
reevaluation period or inaccuracy threshold makes the 
increment using either cv or cu. The qlpc value of the 
popped element is updated and is put back into the heap 
unless no further increments are possible. The algorithm 
runs until the load expenditure of the system is within the 
budget or all the re-evaluation periods and inaccuracy 
thresholds hit their maximum value. In the latter case, the 
load cannot be shed to meet the processing constraint and 
random dropping of incoming updates as well as delay in 
query re-evaluations will unavoidably take place. 
The total number of greedy steps the algorithm can take is 
given by. (l + k) which happens when all re-evaluation 
periods and inaccuracy thresholds have to be increased to 
their maximum values. Each greedy step takes O(log (l + 
k)) time, since the min. heap has l + k elements and the 
heap operations used take logarithmic time on the heap 
size. The final time complexity of the MQLS algorithm 
directly follows as O (. (l + k). log (l +k))and the space 
complexity as O(l +k). 
 

 
 

Fig. 4. The road map used in the experiments, Chamblee, 
Georgia, US. 

The pseudocode of MQLS is given in Algorithm 1. 

 
 
6.2  Setting the Throttle Fraction with THROTLOOP 
We set the throttle fraction adaptively based on feedback 
with regard to how well the system is performing in terms 
of flaking the correct amount of load, using the 
THROTLOOP algorithm. When the throttle fraction z is 
larger than what it should be, the system will not be able to 
re-evaluate all queries at all of their revaluation points and/ 
or will not be able to admit all position updates into the 
system. Let �v represent the fraction of query load 
imposed by the set of re-evaluation periods that was 
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actually handled with respect to query processing. This can 
be calculated by observing the number of query re-
evaluations performed and skipped during the last 
adaptation period, appropriately weighted by query costs. 
Similarly, let �u represent the fraction of update load 
imposed by the set of inaccuracy thresholds that was 
actually handled with respect to update processing. This 
can be calculated by observing the number of updates 
admitted and dropped since the last adaptation period. 
Once �v and �u are computed, we can capture the 
performance of the system in handling the amount of load 
imposed by the current throttle fraction z as follows: 

 
The denominator of (14) is the amount of load the system 
was supposed to handle (recall right-hand side and the 
numerator is the actual amount of load that was handled 
(left-hand side adjusted by v and u). In order to take into 
account the cases where z is lower than what it should 
ideally be, we also consider the utilization of the system, . 
When we have an overshot z, the utilization of the system 
will be 1, whereas it would be less than 1 when we have an 
undershot z since the system would be idle at times not 
processing any queries or updates. As a result, we adjust z 
as follows for the two cases 

 
 

7.  EXPERIMENTAL EVALUATION 
We evaluate MobiQual in two parts. First, we evaluate 
MobiQual without query load flaking and with no user-
defined QoS specifications7.  

 

 
Fig. 5. Example QoS functions, with different midpoint 

QoS values (y0:5). 
The motivation behind this mode, named MobiQual-Light, 
is the fact that update load flaking aspect of MobiQual is 
completely transparent to the inner workings of the query 
engine. It can integrate cleanly and effortlessly with any 
mobile CQ engine that accepts position updates from 
mobile nodes to evaluate spatial CQs. The intelligent 
update load flaking capability by itself provides substantial 
improvement in overall query result accuracy and is a 
significant contribution of this work, and has wide 
applicability. Second, we evaluate MobiQual in its entirety, 
with update and query load flaking capabilities as well as 
accuracy and freshness-based QoS support. The latter study 

illustrates the drastic improve-ments that could be achieved 
by minimally modifying the query engine to integrate query 
load flaking and QoS support. 
 

8.MOBIQUAL-LIGHT: EXPERIMENTAL EVALUATION 
In this section, we present experimental results on the 
effectiveness of the MobiQual-Light load shedder in 
cutting the cost of receiving and processing position 
updates in mobile CQ systems, while minimally affecting 
the accuracy of the query results. We compare our 
MobiQual-Light load shedder with the following 
alternatives: 
. Random Drop: The excessive position updates are not 

admitted to the input FIFO queue and are dropped. 
. Uniform  : A uniform inaccuracy threshold  is used to 

retain only throttle fraction times the original number 
of location updates. The THROTLOOP algorithm is 
still used, but the approach is not region-aware, and 
thus, space partitioning and inaccuracy threshold 
settings are not performed. 

. Grid-Light: A downgraded version of the MobiQual-Light 
load shedder, lacking the GRIDREDUCE algorithm 
which determines the flaking regions based on (l, α) 
partitioning. Instead, it uses equal-sized flaking regions 
based on an l-partitioning. 

 
8.1   Evaluation Metrics 
We define two sets of evaluation metrics. The first set of 
evaluation metrics is used to measure the accuracy of the 
query results under load flaking and the second set of 
metrics deals with the cost of performing load flaking. 
8.1.1   Query-Result Accuracy 
Mean Containment Error, denoted by Err

C, defines the 
average containment error in query results. Containment 
error for a query result is defined as the ratio of the number 
of missing and extra items in the result to the correct result 
set size. Let Q denote the set of queries, R(q) denote the 
result set for a query q  Q under load flaking, and R*(q) 
denote the correct result set under Then, 

 

 
Fig. 6. Containment error of MobiQual-Light versus 

number of flaking regions 
 

Mean Position Error, denoted by Err
P, defines the average 

position error in query results. Position error for a query 
result is defined as the average error in the positions of 
mobile nodes in the query result compared to the correct 
positions. Let p(o) denote the position of a mobile node o in 
a query result q under load flaking and p*(o) denote the 

correct position of o under  
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We have 

 
Standard Deviation of Containment Error, DC

ev, and 
Coefficient of Variance of Containment Error, CC

ov, are 
fairness metrics that measure the variation among the query 
results in terms of containment error. We have Cov

C = DC
ev / 

Err
C. These two metrics can also be extended to the position 

error. 
8.1.2   Cost of Load Flaking 
To evaluate the cost incurred by load flaking, we measure 
1) the time it takes to execute the adaptation step that 
involves running the THROTLOOP, GRIDREDUCE, and 
MQLS algorithms and 2) the number of flaking regions that 
should be known by a mobile node, on average. The former 
metric measures the cost of load flaking from the 
perspective of the server, whereas the latter measures it 
from the perspective of the mobile node as well as the 
wireless network. 
8.2   Experimental Results 
We present the set of experimental results in two groups. 
The first group of results is on the query-result accuracy 
and highlights the superiority of MobiQual-Light compared 
to competing approaches for flaking position update load. 
The second group of results is on the additional cost 
brought by the MobiQual-Light load shedder, and shows 
that the overhead is minimal. 
 
8.2.1   Query-Result Accuracy 
We study the impact of several system and workload 
parameters on the query-result accuracy and the relative 
advantage of MobiQual-Light over competing approaches. 
Impact of the throttle fraction. The graphs in Figs. 6 and 7 
plot the mean position error Err

P and mean containment 
error Err

C as a function of the throttle fraction z, for the 
Proportional query distribution. The left y-axis is used to 
show the relative values (solid lines) with respect to the 
error of MobiQual-Light and the right y-axis is used to 
show the absolute errors 
 
8.2.2   Cost of Flaking Load  
The cost of load flaking consists of 1) configuring the 
parameters of MobiQual-Light on the server side, which 
includes setting the throttle fraction, flaking regions, and 
update throttlers, 2) broadcasting the subset of flaking 
regions and update throttlers that correspond to the 
coverage area of each base station, and 3) installing the 
new set of flaking regions and update throttlers on the 
mobile node side. 
Server-side cost. The graphs in Fig. 10 plot the time it takes 
to execute the THROTLOOP, GRIDREDUCE, and MQLS 
algorithms as a function of the number of flaking regions l, 
for different numbers of cells (α2) for the statistics grid. For 
the default parameters of l =250 and α= 128, the config-
uration of MobiQual-Light takes around 40 msecs. This 
will enable frequent adaptation, even though for most 
applica-tions that involve monitoring cars or pedestrians, it 
is unlikely that the update load will fluctuate with a period 
less than tens of minutes Messaging cost. 

 
Fig. 7 Server-side cost of configuring MobiQual-Light 

 
TABLE 2 Number of Flaking Regions per Base Station 
 
 
 
 
Table 2 shows the average number of flaking regions that 
should be known to a base station as a function of the base 
station coverage area radius. However, in reality, base 
stations have smaller coverage regions at places where the 
number of users is large (urban areas) and larger coverage 
regions at places where the number of users is small 
(suburban areas) This nature of the base stations matches 
perfectly with MobiQual’s space partitioning scheme, since 
the number of partitions is usually larger for dense areas 
and the small base station coverage areas help decreasing 
the average number of flaking regions known to a mobile 
node. Following this logic, we have used a node-density-
dependent base station placement scheme and found that, 
on average, each node, and thus, each base station, should 
know around 41 flaking regions. Assuming a flaking region 
(which is square in shape) is represented by three floats and 
an update throttler is represented by a single 4-byte float, 
the size of the broadcast data sent by a base station to all 
nodes in its coverage area to install the flaking regions and 
update throttlers is around 41 . (3 + 1) . 4 bytes = 656 bytes, 
on average. To assess the messaging cost of MobiQual, 
compare this number to 1,472 bytes, which is the maximum 
payload available to a UDP packet over Ethernet with a 
typical MTU of 1,500 bytes. When MobiQual reconfigures 
the load flaking para-meters, the new information is 
installed on all mobile nodes by using an average of one 
wireless broadcast packet per base station. 
Mobile node side cost. Since the total number of flaking 
regions known to a mobile node at any time is only around 
41, MobiQual-Light does not put a major burden on mobile 
nodes in terms of memory consumption or processing load. 
By employing a tiny 5 X 5 grid index on the mobile node 
side, the flaking region that contains the current position of 
the mobile node can be found quickly. Since MobiQual 
does not incur additional mobile node side cost over 
MobiQual-Light, we conclude that MobiQual will work on 
computationally weak mobile nodes without any problem. 
 

9.  MOBIQUAL: EXPERIMENTAL EVALUATION 
In this section, we compare the performance of the 
MobiQual system in its entirety, with both update and 
query load flaking as well as per-query QoS specification 
support, to a number of other alternatives. These are the 
following: 
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. Query-only load flaking: QoS-aware differentiated load 
flaking with respect to re-evaluation periods only (see 
Section 5) and uses a fixed inaccuracy threshold of 

. 
. Update-only load flaking: QoS-aware differentiated load 

flaking with respect to inaccuracy thresholds only (see 
Section 6) and can be seen as the QoS-aware extension 
of MobiQual-Light. Thus, we name it as MobiQual-
Light+. 

Single -P: Combined QoS-aware query and update load 
flaking, but without query grouping (QLBC algorithm from 
Section 5.3) and space partitioning (extended 
GRIDREDUCE algorithm from Section 6.2). It represents a 
special case of the MobiQual system with  k= l=1 
9.1 Evaluation Metrics 
We evaluate the MobiQual system using four main 
evaluation metrics. These include: 
1. The overall quality metric ₃, as defined by (5).  
2. .The mean period  delay D,  which  is defined as  the 

average     difference between the ideal case period T├ 

and the assigned period of queries Tq=Pj  for  qCj  
       The mean period delay is formulated as 

 
3. The mean position error R, which is defined as the 

average error in the positions of the mobile nodes 
within query results, relative to the error for the ideal 

case of i[1..l ] i = ├ It is formulated as 

 
4.  The running time of the adaptation step, which 

includes configuring a new set of re-evaluation periods 
and inaccuracy thresholds using the MQLS algorithm. 

 
CONCLUSIONS 

In this paper, we have presented MobiQual, a load Flaking 
system aimed at providing high-quality query results in 
mobile continual query systems. MobiQual has three 
unique properties. First, it uses per-query QoS 
specifications that characterize the tolerance of queries to 
staleness and inaccuracy in the query results, in order to 
maximize the overall QoS of the system. Second, it 
effectively combines query load Flaking and update load 
Flaking within the same framework, through the use of 
differentiated load Flaking concept. Finally, the load 
Flaking mechanisms used by MobiQual are lightweight, 
enabling quick adaption to changes in the workload, in 
terms of the number of queries, number of mobile nodes, or 
their changing movement patterns. Through a detailed 
experimental study, we have shown that the MobiQual 
system significantly outperforms approaches that are based 
on query-only or update-only load Flaking, as well as 
approaches that do combined query and update load 
Flaking but lack the differentiated load Flaking elements of 
the MobiQual solution, in particular, the query grouping 
and space partitioning mechanisms. 
In this paper, we  considered range queries. However, 
MobiQual can be applied to kNN queries as well. There are 
various query processing approaches, where kNN queries 

are first approximated by circular regions based on upper 
bounds on the kth distances . Using such approximations, 
kNN queries can also take advantage of MobiQual. 
Supporting kNN queries may also require taking into 
consideration topology of the road network, as it is often 
more meaningful to define nearest neighbors in terms of the 
network distance rather than the euclidean 
distance.MobiQual should be able to dynamically adjust the 
values of the l (number of shedding regions) and k (number 
of query groups) parameters as the workload changes. 

 
Fig: Result quality under changing z  and accuracy QOS 

specs 
An overestimated value for these parameters means lost 
opportunity in terms of minimizing the cost of adaptation, 
whereas an underestimated value means lost opportunity in 
terms of maximizing the overall QoS. In this paper, we 
have shown that the time it takes to run the adaptation step 
is relatively small compared to the adaptation period in 
most practical scenarios. This means that relatively 
aggressive values for l and k could be used to optimize for 
QoS without worrying about the cost of adaptation. We 
leave it as a future work to adapt these parameters 
dynamically. 
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